
rable temperatures, the crystallizationof babingtonitc requires

more hydrous conditions,lower CO 2,and slightlyhigher 0 2lug aci-

tiesinthe fluidphase than ilvaite.Since similartemperatures,CO l

pressures,and oxygen fugacitiesinduced within skarn depositsexist

on Venus, ilvaiteand perhaps babingtonitccould have alsoformed

on the surface of thisplanet by the interactionof the venusian

atmosphere with extruded basalticrocks. One factor that might

mitigate againstthe formation ofthese calcicFel÷-Fe_ silicateson

Venus, however, are the high abundances of Mg and AI measured

during the Venera 13/14 [32] and Vega 2 [33} missions. The Mg 2÷

and A] _ cadons are not accepted into the crystal struc lures of ilvait_

and babingtonite.

Discussion: Although magnetite is generally regarded to be

the predominant ferric-bearing mineral on Venus, other mixed-

valence FeZ+-Fe_ minerals known to exist on the surface of Earth

could be stable in the venusian atmosphere. Thus, in addition to

laihunite (which is probably metastable) and ilv aite and babingtonite

(both of which may be found in rocks depleted of Mg and All, oxy-

amphiboles and oxy-micas may also be major constituents of the

venusian surface. The opacities and high electrical conductiv ities of

such mixed-valence FeZ+-Fc _' silicate minerals, the properties of

which resemble magnetite [34], may also contribute to high radar-

reflectivity regions in the highlands of Venus [35].
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THERMAL BUOYANCY ON VENUS: PRELIMINARY RE-

SULTS OF FINITE ELEMENT MODELING, L D. Butt and

J.W. Head, Department of Geological Sciences, B sown University,

Providence RI 02912, USA.
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Introduction: Enhanced surface temperatures and a thinner

lithosphere on Venus relative to Earth have been cited as leading to

increased lithospheric buoyancy. This would limit[l] or prevent [2]

subduetion on Venus and favor the construction of thickened crust

through underthrusting. Undenltrusting may contribute to the for-

marion of a number of features on Venus. For example, Freyja

Montes, a linear mountain belt in the northern hemisphere of Venus,

has been interpreted to be an orogenic belt [3] and a zone of

convergence and underthrusting of the north polar plains beneath

Ishtar Terra, with consequent crustal thickening [41. Such mountain

belts lie adjacent to regions of tessera and contain evidence of

volcanic activity. Tessera is also considered to consist of thickened

crust [5] and crustal underthrusting is one possible mode for its

formation [4]. Models for the formation of the mountain belts and

associated features must then explain compressional deformation

and crustal thickening, as well as melt production.

In order to evaluate the conditions distinguishing between

underthrusting and subduction, we have modeled the thermal and

buoyancy consequences of the subduction end member. This study

considers the fate of a slab from the time it starts to subduer, but

bypasses the question of subduction initiation. Thermal changes in

slabs subducting into a mantle having a range of initial gcotherms

are used to predict density changes and thus their overall buoyancy.

Finite element modeling is then applied in a first approximation of

the assessment of the relative rates of subduction as compared to the

buoyant rise of the slab through a viscous mande.

Subductlon Modeh In the model, slabs, having a thickness set
L

by 90% of the basalt solidus, subduer at a 45 ° angle into the mantle.

The initial geotherms match surface thermal gradients of 10°C/kin,

15°C/Icm, and 25°C/kin [6]. Slabs heat via conduction, crustal

radioactivity, phase changes, and adiabatic compression. Phase

changes involving the conversion of basalt to eclogite at depths of

60 to 160 km and then enstatite to forsterite plus stishovite between

260 and 360 km generate 0.13 × 10 -s ergs/cm 3 s and 0.36 x 10 -s ores/

cm 3 s respectively [7]. The slab radiogenic heat production is 2,63 x

10 -7 ergs/g s [8]. Adiabatic compression adds 0.5°C per kilometer

of depth. Convergence rates ranged from 5 mm/yr to 100 mrrdyr.

The thermal evolution of the slab is followed using a finite

difference technique [7,9]. The model region measures 800 km

horizontally by 400 km deep. Processing ends when the slab tips

reach a 300-km depth, implying time intervals of I 0 m. y. to 100 m.y.

Slab density changes derive from the thermal results through

calculation of the thermal expansion (% = 3 × IO5/"K [8]) and the

effects of pressure (b = I x lO-3/kbar [8]) on initial densities set for

zero pressure and temperature. The assumed initialdensity stnxcture

includes a 10-km or 25-krn basaltic crust (density = 3.0 g/cm_), a

corresponding 25-kin or 65-kin-thick depleted mant|e zone (den-

sity= 3.295 g/cm3), and an underlying undepleted mantle (den-

sity= 3.36 g/cm3). Density changes due to the phase transitions are

also included. Results take the form of density distributions within

the model region.

Finite element modeling is then employed to gauge the rate at

which a slab having the density structure derived above will move

through a viscous mantle. Buoyancy body forces are applied to a

slab having a viscosity of 102t Pa s surrounded by a mantle with a
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viscosity of 10 t9 Pas. Zero stress boundary conditions are applied

to all sides of the model region, while no motion perpendicular to

region boundaries are allowed except at the top.

Results" Figure 1 shows a typical result of the computations

modeling the density changes. Density contours (0. I g/cm 3 spacing)

clearly delineate the slab and its crustal layer. In this case (10°CJkrn

gcotherm, 25 km crust, subduction rate of 5 kndm.y.) the net slab

densities in the region above the basalt-cclogite phase transition arc

lower than their mantle surroundings (the phase change is set for the

density analysis at 110 km depth). Above the 110-kin depth densi-

ties in the crustal portion of the slab arc lower than in the mantle

outside the slab. This causes the net slab density to be less than that

in the surrounding mantle. Below the basalt-eclogit¢ phase change,

net slab densities exceed those in the neighboring mantle. Net slab

buoyancy remains positive until the slab has lengthened to about

2"/5kin.Therea.fter,slabsbecome negativelybuoyant.

haitial/'mite clement results indicate that the positively buoyant

slabs will rise through the mantle at a rate of 5 to 10 km/m.y. This

analysis considers only the instantaneous velocity of the slab and

does not incorporate the full results of the density modeling or the

dynamics of slab subductive descent.

Discussion: Qualitatively, subduction is likely to be enhanced

by negatively buoyant slabs c¢ hindered by slabs that are positively

buoyant, Positive net buoyancy is found above the basalt-eclogite

phase change, tending to oppose subduction. Negative net slab

buoy ancy for the full- length slab was found for all conditions, while

neutral buoyancy was achieved for slabs at alength o f about 275 kin.

Thus, the slab must penetrate deeply into the mant/e before negative

buoyancy can help drive subduction. The rate of the slab's buoyant

rise through the mantle is then important in determining whether the

slab may descend deeply enough to become negatively buoyant.

Preliminary results of _nite element modeling indicate the slab

may rise at rates between 5 and 10 km/m.y. Thus, subducting slabs

will tend to rise into an underthrnsting position if their subducf_on

rate is slow. However, it may be that moderate to high rates of

subduction will overwhelm the buoyant rise of a slab. This could

lead to slabs being forced through the basalt-eclogite phase Iransi-

zion and lo great enough depths to become negalively buoyant, tb us

possibly producing a self-sustaining subduction system.

These initial results must be considered in light of the presump-

tion of subduction made in undertaking the analysis. Some process

still must be found that would carry the slab downward despite its

initial positive buoyancy. Further work will model more closely the

dynamics of the subductive motion of the slab and the effects of the

slab density evolution on slab buoyancy, its rate of rise through the

mantle, and the continuance of subduction.

These results indicate that for all cases of assumed Venus

geotherm a lithospherlc slab whose subduction has been initiated

will hnstead be forced _o underthrust the overriding lithosphere if the
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Fig. 1. Final density distribution for 10°C/kin geothenm, 25 km crust, and 5

km/m.y, subduction rate. Contours have a 0.1 g/cm3 spacing.

subduction rate is slow. This could then lead to crustal thickening,

melting, and volcanism, and possibly provide one model to explain

the association ofcompressional mountain belts and blocks of high-

standing tessera, with apparent flexural rises and f0re, deeps, and

with large volumes of volcanic deposits.
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EROSION VS. CONSTRUCTION': THE ORIGIN" OF VENU-

SIAN CHANNELS. D.B.J. Bussey and J. E. Guest, University

of London Observatory, University Co[/ege London, London NW7

2QS, UK.

Lava channels are a common feature in the volcanic regions of

the Moon, and have now been observed on Venus { 1]. There h as been

much debate about the origin of lunar channels: Are they the result

of erosiona/(either thermal or mechanical) or constractional pro-

cesses? It is necessary to determine the criteria to distinguish

between the different types of channels. The clearest evidence is that

the presence of levees indicates that the channel experienced a

constructiona/phase for a period.

Greeley [2] has proposed that Hadley Rille, on the Moon, was

formed as a leveed channel and lava tube system. Evidence for this

is its location along the crest of a ridge. In addition, Hadley Rille and

other lunar mare sinuous lilies are discontinuous, suggesting that

their origin was, in part, a lava tube th at has subsequently undergone

partial roof collapse. Care [3} and Head and Wilson [4] have argued

that these rilles were produced by lava erosion. For lunar highland

channels, which tend to be larger than their mare counterparts,

mechanical erosion of the megaregolith is a possible process.

Channels of several different types have been observed on the

surface of Venus l11. They are probably formed by more than one

process. They range in size from a few kilometers to over 6800 km

[ 1]. The relatively short ("tadpolelike") channels [5] (e. g., 24 S 347)

appear similar to lunar mare sinuous rilles in morphology. They are

so like certain constructional terrestrial channels (e.g., Kalaupapa,

Hawaii [6]) that it appears reasonable to say that they too are

conslructiona] channels or collapsed lava tube systems.

However, the long sinuous channels referred to by B alter et al. [ 1]

as "canali" pose a different problem in the understanding of their

formation. One example of a channel of this type in the southeast

region of Aphrodite Terra appears to show both erosional and

constructional characteristics. This channel is represented in Fig. 1.

It is approximately 700 km long with an average width of about 1

kin. It drops a distance of 700 m from beginning to end, which means

that the average slope is 0.06 °. Its source may have been a graben

situated at the northwest end of the channel. It appears to have

different origins along its length.

The lack of levees near the source suggests that the channel "

is erosional in this region. An inferred profile is shown as AA' in

Fig. 1.


